Certified Metrication Specialist Program.

 (Part 2 - South Carolina)USMA CMS Chair

DON JORDAN
don.jordan@usma.org

${ }^{4}$ Never mind taking me to your leader!
If your country hasn't gone metric yet, we won"t be able to do business anyway."

The Dog

What is the name of this dog?

Answer! Pound Puppy

What will be the name of this dog after the United States completely adopts the Metric

 System?

Answer:

Kilogram Puppy

What good will this do the dog?

Hurray! No More Pound

What good will this do the dog?

Answer:
As soon as we adopt the metric system there will be no more pound and this dog will not be homeless anymore

The Metric System

Advantages of Teaching the Metric System

Graduations on a Metric ruler:

Conceptually much simpler

It is used in nanotechology

The American Association for the Advancement of Science mentioned an additional intangible benefit...

Children learn Metric more readily

It has been found that slower children learn metric more readily than they do the customary system-a factor that could not possibly be expressed in monetary terms

Time Could be Saved:

6 months to 2 years

 of elementary arithmetic could be eliminated with the adoption of Metric
Key Teaching Point

"Never convert between the customary system and the metric system"

The most common used metric units are:

Length	Area	Mass	Volume	Capacity
mm	cm^{2}	mg	mm^{3}	mL
cm	$\mathrm{~m}^{2}$	g	$\mathrm{~cm}^{3}$	L
dm	$\mathrm{dm} \mathrm{m}^{2}$	kg	dm^{3}	
km	hm^{2}	t	m^{3}	

Other prefixes that are now in common use are:

mega (M) 10^{6}; (one million) giga (G) 109; (one billion) tera (T) 10 ${ }^{12}$; (one trillion) and micro $(\mu) 10^{-6}$; (one millionth); nano (n) 10-9; (one billionth); pico (p) 10-12; (one trillionth) pronounced "Peek-oh"

The Interrelationship between Mass, Length, \& Volume in the Metric System

one gram is the mass of $\mathrm{H}_{2} \mathbf{O}$ in a cm ${ }^{3}$

Volume of 1 cubic (cm^{3}) centimeter

One cm^{3} of Water $=$ One milliliter mL

So each mL of water has a mass of 1 g

One Liter (1 L = 1000 mL)

So 1 liter full of water has a mass of 1000 g or 1 kg

The Seven Basic Units in the Metric System The Magnificent Seven

1. Length Meter m
2. Time Second \mathbf{s}
3. Electric Current Ampere A
4. Luminous Intensity Candela cd
5. Temperature Kelvin K or Celsius ${ }^{\circ} \mathrm{C}$
6. Mass Kilogram kg
7. Amount of Substance Mole mol

All other units are derived from the Magnificent Seven

Examples:

Speed is meter per second (m / s)
Acceleration is the meter per second per second $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
Area is square meter (m^{2})
Volume is the cubic meter $\left(\mathrm{m}^{3}\right)$
Newton (N) $1 \mathrm{~N}=1 \mathrm{~kg}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
Total Bioavailability of a drug $=\mu \mathrm{g} / \mathrm{cm}^{3}$ hours

The Magnificent Seven Drawing

Draw a Picture of seven cowboys/or cowgirls
(You can substitute other ideas "Seven Super Heroes" etc.) where each represents one of the seven basic units in the metric system

Drawing / Art

Identify each character with one of the seven basic units:

1. Meter (m), 2. Second (s), 3. Ampere (A),
2. Candela (cd), 5. Celsius (C), 6. Kilogram (kg) and 7. Mole (mol)

- Use landscape and put this on one office size page ($216 \mathrm{~mm} \times 279 \mathrm{~mm}$)
- Use color
- Please sign the back of your art
- We will grade this based on the following information: I will show you an example in class and discuss the Seven Basic Units in the Metric System

Amount of Substance - Mole mol \uparrow

$=$

Length - Meter m

Time - Second s

Temperature - Celsius ${ }^{\circ} \mathrm{C}$

Mass - Kilogram kg

Luminous Intensity - Candela cd \uparrow

Electric Current - Ampere A

Example of Student Art

Snow White's 7

Kelvin/Celsius
(Sleepy- Cold
(Sleepy- cold
temperatures
down)

Our World - The Seven Continents

The Four Main Reasons Why the US Should Go METRIC

1. The SI Metric System was scientifically developed

1. Scientifically Developed

Roman mile was 5000 ft

1 fur-long = 660 ft or 220 yds

Why then

5280 ft today

$5,280 \div 660=8$

So the addition of 280 feet to the Roman mile means

$$
1 \text { mi = } 8 \text { fur-longs }
$$

2. Ease of Computation

Which is easier?
$29 \mathrm{mi}=$ \qquad in (inches)

29 km = \qquad cm

Here is the problem!

$$
\mathrm{mi} \rightarrow \mathrm{fL} \rightarrow \mathrm{rods} \rightarrow \mathrm{yds} \rightarrow \mathrm{ft} \rightarrow \mathrm{in}
$$

$$
\mathrm{km} \rightarrow \mathrm{hm} \rightarrow \mathrm{dam} \rightarrow \mathrm{~m} \rightarrow \mathrm{dm} \rightarrow \mathrm{~cm}
$$

I will do km to cm

Answer ** \square
$29 \mathrm{~km}=290 \mathrm{hm}=2900 \mathrm{dam}=29000 \mathrm{~m}$
$=290000 \mathrm{dm}=\underline{2900000} \mathrm{~cm}$

Ok you do mi to in!!!

Good Luck!

$29 \mathrm{mi} \rightarrow \ldots \mathrm{fL} \rightarrow$ ___ rods rods \rightarrow ___yds \rightarrow ___ft
$\mathrm{ft} \rightarrow$ \qquad in

Fact:

The metric system is based on decimal arithmetic, just like dollars and cents

Once learned, it's simpler to use and less prone to error

Ok you are in Luck! I found some conversions "Have Fun"

$$
\begin{gathered}
1 \mathrm{mi}=8 \mathrm{FL} \\
1 \mathrm{FL}=40 \mathrm{Rod} \\
1 \mathrm{Rod}=5.5 \mathrm{yd} \\
1 \mathrm{yd}=3 \mathrm{ft} \\
1 \mathrm{ft}=12 \mathrm{in}
\end{gathered}
$$

Ok here are the answers How did you do?

$29 \mathrm{mi} \rightarrow \underset{29 \times(8)}{232} \underset{232 \times(40)}{\rightarrow}-9,280 _$rods
rods $\underset{9,289 \times(5.5)}{\rightarrow} \quad 51,040 \underset{51,040 \times(3)}{\text { ydds }} \rightarrow 152,120 _\mathrm{ft}$
$\mathrm{ft} \rightarrow \frac{1,837,440 \mathrm{in}}{153,120 \times(12)}$
3. Sconomic Reasons

Industry is the driving force behind metrication

Economic Reasons

Most major U. S. industries are primarily or completely metricated

- Automobile
- Construction equipment
- Electronics
- Soft drink
- Liquor
- Pharmaceutical

Benefits from Transition to Metric Some Examples

- IBM during metric conversion reduced fastener part numbers from 38,000 to 4,000
- The Liquor Industry reduced its containers sizes from 53 to $\underline{7}$
- You weigh 82 kilograms instead of 180 pounds

We only need to make the change once
 The benefits are perpetual

4. Universal Language

The metric system is the only measurement system ever to approach world-wide adoption

Some 6,500 years after the dawn of Civilization we are finally going to have a Universal Language of Measurement

The four Main Reasons "Why" the US Should Go Metric

1. The SI Metric System Was Scientifically Developed
2. Ease of Computation
3. Economic \& Trade Reasons
4. This is a METRIC WORLD (Universal Language)

Please Answer The Following Questions

I'd walk a
 for

 a camel
I'd walk a Kilometer km for a camel

Good-bye inch worm Hello worm

Good-bye inch worm
Hello Centimeter cm worm

Football is a game of
_Centimeter _cm

prevention is worth a
of cure

prevention is worth a
__Kilogram_kg of cure

Give him a
and he will take a

Give him a centimeter cm
and he will take a __kilometer km

The foot-long hot dog will become the dog

The foot-long hot dog will become the

 three decimeter 3 dm dog

God's little acre will become God's little

God's little acre will become God's little hectare ha

Go to the bathroom, step on the scale, and

Go to the bathroom, step on the scale, and "mass yourself!

Did you know that....

- Metric - minimizes the likelihood of error
- Metric - does not have the numerous conversion factors of the other systems
- Metric - has one unit for a quantity
- Metric - is Legal - Logical - \& Preferred
- Since 1992 federal government contracts, grants and publications must be metric
- Six months to two years of elementary arithmetic might be eliminated with the adoption of SI-Metric

Metric Websites

www.nist.gov/education

Metric System then Puzzles and Games:

- Measurement Word Search
- Measurement Crossword
- Vocabulary Challenge
- NIST Metric Pyramid
- Big Match Up
- My Name Card
- Metric Bookmark

Metric Websites

www.metric.org

United States Metric Association

Why teach the metric system (SI)
Using the metric system (SI)
Tips to educators for teaching the metric system
Teaching metric to very young children

Going Metric is easy and is seeping into the U.S. language

Metric is here to stay!

- It is perfectly acceptable to speak of the 100 meter racer in the Olympics or the local 5 K run for cancer research
- People are happy to buy $\mathbf{3 5 \mathrm { mm }}$ film and talk about the 4.0 liter engine in their car
- Fat and fiber come in grams, sodium in milligrams, computer speeds in megahertz, and even wine and spirits come in metric sizes only
- Watts, volts, and amperes are metric units
- The metric system is the language of science and medicine
- If you want to go to college, you better take chemistry in high school...Chemistry is 100% metric

One can make a relationship between each everyday metric units and something physical

For example:

- Centimeter: the diameter of the colored part of your eye
- Meter: the height of a doorknob in your home, the length of a baseball bat
- Gram: a little more than the weight of a paper clip or three raisins
- Decimeter: The length of an ordinary wall receptacle
- Square Decimeter: the size of a slice of bread. And so on...

Make no relationship

- Note: No relationship to the customary units is made
- You do not want to mix the units
- So I would never say a meter is about a yard

We have to stop recycling the problem

As it stands in the US our Universities that offer teacher degrees, DO NOT have a strong curriculum on metric training

Without Knowledge or Confidence

Hence the new teachers leave the institution without the knowledge or confidence in themselves to teach metric

So What Happens?

So what happens when the classroom door is shut?

They teach what they know

- the old customary system, which the child gets at home anyway

THANK YOU!

