Following are answers to miscellaneous questions about the metric system.
You can go to specific questions from the list below, or you can read this page in its entirety, if you wish, by jumping to the first answer below.
Index
Is the International System of Units called “SI” in all languages?
The name “The International System of Units” is, of course, translated appropriately in different languages. But it’s useful to have a standard, international abbreviation, and that’s “SI” (all caps, no periods, pronounced as separate letters “ess eye”), derived from the French Système international d’unités
but used in all languages.
Generally, when used as a noun the abbreviation “SI” is preceded by the: “In the SI, the value of the velocity of light in vacuum is c = 299 792 458 m/s exactly.”
Is there a difference between “the metric system” and the SI?
“The metric system” is a nickname for the International System of Units, aka the SI. The latter terms are used primarily in formal contexts.
Before the SI, there were older forms of the metric system that used different base units. For example, the CGS system used the centimetre, gram, and second, and included now-obsolete units like the erg and dyne. So in the early days, the term “metric system” was ambiguous, leading to the term “modern metric system” to refer specifically to the SI.
But it’s been more than 50 years since the SI was defined, so for all practical purposes, today “the metric system” is synonymous with the SI.
Note that “metric” (in the context of the SI) is an adjective, not a noun: metric system, metric units, metric legislation, metric conversion, metric ton, etc. People sometimes use “metric” or “metrics” as slang for “the metric system”, but this is not technically correct.
Refer to the question What’s a metric? (below) for other meanings of the word.
How can I get a copy of the SI standard?
To read the SI standard, get a copy of the SI Brochure from the International Bureau of Weights and Measures (BIPM). It’s available at no charge in English or French.
You might also want NIST SP 330, The International System of Units (SI), which is the US version of the SI Brochure, and SP 811, Guide for the Use of the International System of Units (SI), which has much more detail on usage. These and others are available via the SI bibliography at NIST.
In addition, there’s IEEE/ASTM SI 10-2016, American National Standard for Metric Practice, which is available for purchase from ASTM or from Techstreet.
We also have a more complete list of SI reference publications from various sources.
Where can I get a list of SI prefixes and their origins?
For a complete list of the SI prefix names and symbols, with their factors, pronunciations, and origins, see SI prefixes and their etymologies.
SI prefixes are defined for powers of 1000 — i.e., 10n where n is a multiple of 3 — as well as 10±1 and 10±2. Long ago, there was a prefix for a factor of 10 000 (104), “myria”, but that is long obsolete and not used in the SI. You’ll see it (and a few other obsolete units) listed in the original tables in the Metric Act of 1866.
Where can I find unit conversion factors or calculators?
Here’s a list of the most frequently used conversion factors. For a (very) comprehensive list of conversion factors, get a copy of NIST Special Publication 811, which you can download from the NIST SI bibliography, and see Appendix B.
Some handheld calculators can do unit conversions, but we don’t keep a list of model numbers. In the 1970s, various companies made cardboard or plastic “slide” converters, but as far as we know, they exist only as antiques these days.
There are many unit conversion sites online, as well as smartphone apps; do a search for them. And many search engines can do unit conversions for you. Try, for example, asking for “5 mi in km” — here’s what you get from Google, Wolfram Alpha, and from Bing, to show a few examples.
In practice, it’s best to avoid conversions as a way of learning and understanding the metric system. Instead, try to “think” in metric. In a way, it’s like learning another language. If your native language is English and you learn Spanish, you wouldn’t have to translate “la puerta está abierta” into English — “the door is open” — before understanding what it means; you’d understand the Spanish directly.
Similarly, it’s best to learn to understand metric measurements directly, without having to “convert” them in order to understand them.
How do you capitalize, abbreviate, and pluralize unit names and symbols?
SI unit names are ordinary words. SI unit symbols are exactly that — symbols — and have fixed forms. Here are some of the differences in usage.
Unit names | Unit symbols |
---|---|
Unit names are spelled and pronounced differently in different languages. For example, it’s “metre” in English (or, sometimes, “meter” in US English), “mètre” in French, “Meter” in German, and “metro” in Spanish. | Unit symbols are the same in all languages, so the symbol “m” is universal. |
Unit names are singular or plural as usual — one metre, two metres. (But “one hertz”, “two hertz”, since the plural of hertz is hertz.) | Unit symbols are not abbreviations, and do not have a plural form — 1 m, 2 m. |
Unit names are capitalized only when used as the first word of a sentence or in some styles of writing titles. This applies even to units named after people: “The watt was named after James Watt.” (And it’s “megawatt”, not “megaWatt”.) There’s one exception: “degrees Celsius”. | Unit symbols are case-sensitive, so it’s always mW for milliwatt and MW for megawatt. |
Don’t abbreviate unit names. For example, you can spell out “seconds” or use the symbol “s”, but don’t write “sec”. Ditto for cc (use cm3 or mL) and kph (it’s km/h). | Unit symbols are not abbreviations, so they are not followed by a period (unless at the end of a sentence). |
Are they spelled “metre” and “litre” or “meter” and “liter”?
Short answer: they’re officially spelled “metre” and “litre”.
Long answer:
The names of SI units are ordinary words, different in different languages, and sometimes, as in English, they have multiple spellings (though only the former spellings are official). SI unit symbols, on the other hand, are the same in all languages.
In US English, the “-er” spellings are common even though the “-re” spellings are equally valid as well, while in all other varieties of English (including the one used by all international organizations such as the BIPM itself), the “-re” spellings are used exclusively. Both are “correct” in a technical sense, but the “-er” spellings are unofficial and valid only in the US.
How about “gram” versus “gramme”?
The official spelling is “gram”. While British English allows for both spellings, “gram” is still preferred and far more common.
How about “tons” and “tonnes”?
The word “ton” in isolation is ambiguous because there are several kinds. The three most common are the
- short ton or US customary ton: 2000 lb;
- long ton, imperial ton, or UK ton: 2240 lb; and
- “metric ton”: 1000 kg.
The “metric ton” (symbol: t) is officially called a tonne, but the preferred term in the US is “metric ton” because you can’t distinguish “ton” from “tonne” when spoken, and the short ton is still commonly used throughout the US. Since the long ton is almost the same, relatively speaking, as a metric ton, the official term (tonne) is used in the UK interchangeably in everyday contexts. Most other places in the world only use the SI and other metric units, so the tonne is used both in spoken and written form.
One metric ton (1 t) is close in mass to the long ton, which is 1.016 t. Note also that a metric ton is not an SI unit, but a unit that is accepted for use with the SI. It is the same as a megagram (Mg), which is the official SI unit, but the unit “megagram” is less commonly seen even though we encourage its use to avoid all of the confusion above.
Is the symbol for the litre L or l?
Both L and l (upper- and lowercase letters “ell”) are correct symbols for the litre. The uppercase version is preferred in the US, Canada, and Australia to avoid confusion with the digit 1 (one) and the uppercase letter I (“eye”). A lowercase script “ell” (ℓ) is occasionally seen, but it is not correct.
For history buffs: The original symbol for the litre, adopted by the CIPM in 1879, was l (“ell”), and that was confirmed in Resolution 7 of the 9th CGPM in 1948. However, several countries later adopted a uppercase L to avoid confusion with the digit 1, and in 1979, Resolution 6 of the 16th CGPM decided as an exception, to adopt the two symbols l and L as symbols to be used for the unit litre
, but said that in the future only one of these two symbols should be retained.
As of 2024, no decision has been made, so both symbols remain correct.
How about “cc”?
The symbol for the cubic centimetre is cm3 or, because the millilitre has exactly the same volume, mL.
The informal and unofficial abbreviation “cc” for cubic centimetre is sometimes seen (especially when referring to engine displacements) but, like other SI unit abbreviations, should be avoided in writing.
Is the litre the same as a cubic decimetre?
The litre has exactly the same volume as a cubic decimetre:
1 L = 1 dm3
and the millilitre is, therefore, the same as a cubic centimetre:
1 mL = 1 cm3
However, the litre once was defined differently.
The litre was originally defined in 1795 as a volume equal to a cubic decimetre, just as it is now. But in 1901, the litre was redefined to be the volume occupied by a mass of 1 kilogram of pure water, at its maximum density and at standard atmospheric pressure. Under that definition, the litre differed in volume from a cubic decimetre by about 28 parts in 106. In 1964 the original definition was restored, so litre is again a special name for the cubic decimetre.
Is a micron the same as a micrometre?
A micrometre is, of course, one millionth of a metre or a thousandth of a millimetre. The micron (symbol: µ) was originally a special name for this length, but the name and symbol were officially declared obsolete in 1968, so it’s no longer correct to use microns.
Note that micrometre, the unit of length, is pronounced with the accent on the first syllable. The micrometer, pronounced with the accent on the second syllable, is an instrument for very accurately measuring lengths.
How big is a hectare?
The hectare (symbol: ha) is a unit of area equal to 10 000 m2 and used exclusively for measuring land. Its pronunciation is identical to “air”.
One hectare equals (100 m)2, or 1 hm2, so envision a square, the length of a US football field on each side, for an idea of the size of a hectare. For comparison, an acre is equivalent to a square about 64 m on a side.
There are 100 hectares in a square kilometre, so 1 km2 is the same area as a square that’s ten US football fields on a side.
Technically, the hectare is classified with the non-SI units accepted for use with the SI, along with the litre and metric ton. A hectare is, of course, 100 ares, where an are (“air”) is 100 m2, but the are itself is no longer used.
“Hectare” is one of a few unit names (like kilohm and megohm) where the vowel at the end of the prefix is omitted in the English spelling and pronunciation to avoid a double vowel. In other cases, double vowels are not elided: megaampere, for example, is correct and has four syllables.
How do you pronounce “kilometre”?
Kilometre is pronounced with the accent on the first syllable — KILL-oh-meet-er. Sometimes, it is pronounced with the accent on the second syllable — ki-LAW-met-er — but this is incorrect.
It’s easy to see why when compared to other units with prefixes, which are accented on the first syllable — nanometre, kilolitre, microgram — and that words with the -AW-met-er pronunciation are all instruments used to measure something — odometer, speedometer, thermometer — rather than units of measurement.
In particular, consider micrometre/micrometer: Accented on the first syllable, it’s a (rather small) unit of length, while accented on the second syllable, it’s an instrument used to very accurately measure lengths.
While the SI standard itself or the BIPM does not specify pronunciations for unit names (since different languages have different names and pronunciations), the rules and patterns of English inform us of the proper pronunciation. Following them, it is logical and proper to accent the first syllable of kilometre (KILL-oh-meet-er), and it is the pronunciation we use and teach (as does NIST, the Oxford English Dictionary, and many others).
The mispronunciation seems to have originated in the US, where the unofficial and nonstandard spelling “kilometer” is used. Given the lack of everyday use of and familiarity with the SI, some unassuming people seem to have confused its pronunciation with that of measuring devices, and this mispronunciation spread. Of course, it is very easy to correct this mispronunciation, as there is no such device that measures “kils” (or “kills”)…yet.
Is “K” a synonym for “kilometre”?
In everyday use, there are shorthand slang nicknames for the kilometre, the most common being “K” and “klick” (plurals Ks and klicks, the latter sometimes spelled with a “c”).
The terms can mean either kilometres or kilometres per hour, the meaning being obvious in context.
Like most slang, they’re OK in speech but should be avoided in writing, where you can use “km” or “km/h” if you want to be brief. It is nevertheless common to see “a 5K race”, which everyone knows is slang for a 5 km race, not a 5 K race (5 kelvins, presumably a race conducted at a very, very cold temperature).
What about “K” for computer-related terms?
In computer-related contexts, the SI prefix names and symbols are sometimes used in incorrect and confusing ways.
It started with the kilobyte, which theoretically should mean 1000 bytes but was used to actually mean 1024 bytes (210). It seemed like a good idea at the time, but things got messier as they got bigger.
For example, one megabyte sometimes means 1 048 576 bytes (a kilobyte squared), sometimes means 1 000 000 bytes, and sometimes means 1 024 000 bytes, depending on who’s talking about what.
This confusion was resolved in 1998, when the International Electrotechnical Commission (IEC) published new prefixes to refer to base-2 multiples in the computing context. You can read about the prefixes for binary multiples if you want to know more about this issue, which is only peripherally related to the metric system.
Is it “kelvins” or “degrees Kelvin”? Celsius? Centigrade?
It’s “kelvins” (lowercase k) with the symbol K (uppercase K).
In older material you’ll run across “degrees Kelvin” (symbol: °K), but that usage was officially declared obsolete in 1980.
Celsius temperature is expressed in degrees Celsius (lowercase d, uppercase C) with the symbol °C. The old term “degrees centigrade” was officially declared obsolete in 1948.
What about angles? Radians, steradians, degrees, …
The SI unit of plane angle is the radian (symbol: rad). The radian is the angle that, subtended from the center of a circle, cuts an arc equal in length to the radius. Because the circumference of a circle is 2π times its radius, a complete circle (360°) is 2π rad; thus, 1 radian is 180/π degrees, or approximately 57°.
Officially, the radian is a derived unit that is a special name for the number one, which follows from its definition: Being a ratio between an arc length and a radius, its base units are m/m = 1.
That said, the radian is rarely used outside of technical and scientific contexts, where it is useful because it is a coherent unit, simplifying many formulas in physics, but the details are beyond the scope of this FAQ.
In ordinary usage, angles are almost always expressed in degrees, with fractional values either in decimal parts of degrees or in minutes and seconds (the latter sometimes called “arcminutes” and “arcseconds” when ambiguity is an issue). Note that no space is left between the numeric value and symbol: 12° 34′ 56″.
The gon (also called the grad or grade) is defined as (π/200) rad. Thus, there are 100 gon in a right angle. The potential value of the gon in navigation is that, because the distance from the pole to the equator of Earth is approximately 10 000 km, 1 km on the surface of Earth subtends an angle of one centigon at the center of Earth. However the gon is rarely used.
The SI unit for solid angle is the steradian (symbol: sr), defined as the solid angle subtended at the center of a sphere by a portion of the surface whose area equals the square of the sphere’s radius. As such, its units are m2/m2, and so technically the steradian is a derived unit that is special name for the number 1.
Solid angles are so rarely encountered outside of technical contexts that there are no other common solid angle units. Note that some SI units include the steradian in their definitions, such as the lumen, which is 1 cd⋅sr.
What about atmospheric pressure: hectopascals, kilopascals?
Like any other pressure, atmospheric pressure (or “barometer”, referring to the instrument that measures it) is expressed in pascals (Pa).
Atmospheric pressure at Earth’s surface is generally in the neighborhood of 100 000 pascals. It’s usually expressed either in hectopascals, often to the nearest tenth (1013.3 hPa), or kilopascals, often to the nearest hundredth (101.33 kPa).
The World Meteorological Organization’s Publication 8, Guide to meteorological instruments and methods of observation, specifies the units for meteorological observations; these include atmospheric pressure, p, in hectopascals (hPa)
. It also specifies that the scales of all barometers used for meteorological purposes should be graduated in hPa.
Using hectopascals has the advantage that the numerical value is identical to that in millibars, a pre-SI unit for pressure. Internationally, hectopascals are also used for aircraft altimeter settings.
Note, by the way, that air pressure changes significantly with altitude, so the “barometer” reading in a weather report is not the actual pressure measured at the weather station, but (oversimplifying a bit) an indication of what the pressure would be if the station were at sea level.
The “standard atmosphere”—more or less the average air pressure at Earth’s sea level—was defined in 1954 as 101 325 pascals. At one time this was treated as a unit (1 atm = 101.325 kPa); now, it is still the definition of the standard atmosphere but is no longer used as a unit.
Why does the base unit for mass, the kilogram, have a numeric prefix?
It’s a historical accident.
When the metric system was originally developed, the standard unit for mass was the mass of a litre of water at 4 °C at sea level — basically the same as today’s kilogram, although at the time it was called the “grave”.
After the French Revolution, the new government decided that this unit was inconveniently large, since many mass measurements involved much smaller masses. As a result, they changed the standard to be 1⁄1000 of its original value, and named it the “gramme” (essentially the same size as today’s gram).
But it would have been impossible to make a 1-gram object to serve as the prototype mass standard at the time, so they created a “kilogram of the archives” to serve as the actual standard.
However, it’s best if the standard and the base unit are equal, so the base unit was later declared to be the kilogram. Renaming it would have been difficult so the name stuck.
See also Historical perspective: Unit of mass, kilogram from BIPM.
Is it “weight” or “mass”?
In everyday use, “weight” is used as a synonym for “mass”. You weigh something to determine its mass, which is usually called its “weight”, measured in grams, kilograms, or the like: “A US nickel weighs 5 grams.”
However, scientific and technical literature reserves the term “weight” for (roughly speaking) the gravitational force an object “feels”, measured in newtons. In science class, you’d say, “The mass of a nickel is 5 grams. It weighs about 50 millinewtons on Earth and about 8 mN on the moon.”
But does that mean that “weight” is an ambiguous word? Not necessarily. In fact, one of the advantages of the metric system is that it often eliminates ambiguity. Consider:
A nickel weighs 5 grams.
There’s no ambiguity; clearly that sentence refers to mass, because the gram is a unit of mass. A nickel weighs 5 grams on Earth, on the moon, and on the International Space Station. On the other hand:
A nickel weighs about 50 mN on Earth, 8 mN on the moon, and 0 mN on the ISS.
There’s no ambiguity; clearly that sentence refers to the force of gravity, because the newton is a unit of force.
But writing those sentences using non-metric units can lead to ambiguity, because, for example, there’s both a unit of mass called “ounce” and a unit of force called “ounce”.
Should there be a space between the number and a unit symbol?
Put a space between the numerical value and unit symbol. For example:
- Correct
- 25 kg
- Incorrect
- 25kg
A space is required even when used as an adjective — “a 25 kg sphere” — although the normal rules of English apply to unit names, where a hyphen is used for the adjectival sense — “a 25-kilogram sphere”.
For degrees Celsius, the correct spacing looks like this: 20 °C.
Angles are an exception, which are written without spaces: 12° 34′ 56″. Note that there are still spaces separating the number-unit combinations.
How about commas to separate groups of three digits?
The preferred approach is to use thin spaces to separate numbers into groups of three digits to the left and right of the decimal point:
“The speed of light in vacuum is exactly 299 792 458 m/s” or “The value of pi is approximately 3.141 592 65.”
In English, commas are often used as digit separators: “The speed of light in vacuum is exactly 299,792,458 m/s.” That’s OK, but there’s a potential ambiguity in numbers like 3,141 — is that three thousand one hundred forty-one, or is it the first few digits of pi with a comma for the decimal point? (See the next question for details.)
What about the decimal point? I’ve seen a comma instead of a period.
In English — US and most Commonwealth varieties — the decimal marker is the point on the line; for example, 3.14. And always put at least one digit before the decimal point: 0.25 s rather than .25 s.
The long story: You’ll sometimes see a point — 3.14 — and sometimes a comma — 3,14 — to mark the decimal point. They’re both correct.
You might think it’s a language issue, but it’s more complicated than that. In some languages that are native to more than one country, either the point on the line or the comma on the line is used as the decimal marker depending on the country.
You might think it’s a nationality issue, but it’s more complicated than that. In some countries with more than one native language, either the point on the line or comma on the line is used depending on the language.
You might think it’s a standards issue. Some international standards bodies specify the comma as the decimal marker in all languages.
But in reality, either the point or the comma is correct, and you should use whatever is “standard” where you are; it doesn’t change just because you’re using the SI.
In 2003, the 22nd General Conference on Weights and Measures officially declared that the symbol for the decimal marker shall be either the point on the line or the comma on the line
, and the International Bureau of Weights and Measures uses the point in its English-language publications and the comma in its French publications.
As for international and national standards organizations’ opinions, ISO 31-0:1992, Quantities and units — Part 0: General Principles, in Section 3.3.2 says, The decimal sign is either the comma on the line or the point on the line.
(This was reworded by Amendment 2.) IEEE/ASTM SI 10-2002, American National Standard for Use of the International System of Units (SI): The Modern Metric System, Section 3.5.4.1, says, In the US, the decimal marker is a dot on the line.
There is, in fact, a third flavor. In some material you’ll run across a middle dot (interpunct) used as a decimal point — 3·14 — but this should be avoided. This is because it is easily confused with the dot operator, which is used indicate multiplication, although this is recommended primarily for derived units — e.g., kW⋅h — and not for the multiplication of numbers; for the latter, the multiplication sign (×) is recommended. For example, “53 m/s × 10.2 s” is preferred over “53 m/s ⋅ 10.2 s”.
How about billions and billions?
It’s OK to use the words billion (1 000 000 000 or 109), trillion (1 000 000 000 000 or 1012), etc.
Long ago, those words meant different things in Commonwealth English than in US English, but the world has settled on the (originally) US definitions, so there’s no longer any reason to avoid billions and trillions.
However, if billions or trillions are being used with the SI, it almost always means that prefixes can be used, which are preferred over the former (e.g., “5 teragrams” instead of “5 billion kilograms”). The table of SI prefixes and their etymologies shows the prefixes for very large and very small multiples.
How do you handle fractions of a metric unit?
Use decimal fractions, not common fractions. For example:
- Good
- 2.5 m
- Bad
- 21/2 m
You may, of course, say “two and a half metres” — 0.5 is often read aloud as “one half” — but you should always write it as a decimal fraction.
How about mixing units?
A single measurement uses a single unit (which may be a derived unit like km/h).
- Good
- 1.76 m
- 176 cm
- Bad
- 1 m 76 cm
There may be a difference between the way a value is written and the way it’s spoken. For example, someone’s height is usually given in metres or centimetres — 1.76 m or 176 cm — but it’s sometimes spoken as “one metre seventy-six”, even though it’s not written that way.
Every rule seems to have exceptions, and the exceptions to this rule include the use of mixed units in angles and times:
- Angles
- 12° 34′ 56″
- Times
- 2 d 12 h 15 min 5 s
In addition, one common way to express motor vehicle fuel efficiency is to use litres per hundred kilometres, leading to a measurement like 9.8 L/(100 km). Mathematically speaking, the parentheses are required, but in practice, they are usually omitted: 9.8 L/100 km.
Is it OK to use centimetres?
Centimetres are valid units in the SI.
However, there are industry-specific conventions for preferred unit prefixes. For example, §3.2.2(c) of IEEE/ASTM SI 10-2002, American National Standard for Use of the International System of Units (SI): The Modern Metric System, says:
For certain quantities in particular applications, one particular multiple or submultiple is often used. For example, the millimeter is used for linear dimensions in engineering drawings even when the values lie far outside the range of 0.1 mm to 1000 mm…
Some argue against the use of centimetres entirely (or any SI prefix that is not a multiple of 1000, for that matter; i.e., centi-, deci-, deca-, and hecto-) in order to simplify the system and facilitate rapid adoption, especially in a country that has not yet metricated completely. For more details, read Pat Naughtin’s arguments on centimetres vs. millimetres.
How about multiple prefixes?
SI prefixes are never combined. Use one prefix or none at all.
In old material, you’ll encounter usage like “2200 μμF”, but this is not correct — it’s a 2200 pF capacitor. Similarly, MF or MFD was sometimes used instead of μF. This is incorrect, but the Greek letter mu wasn’t always available.
(By convention, capacitance values are given in microfarads — 0.0022 μF — or picofarads — 2200 pF — but not nanofarads, even though it would certainly be correct to note that this example is a 2.2 nF capacitor.)
How do you write units derived by multiplication or division?
Some units are combinations of other units formed by multiplying or dividing them — technically, “derived units”.
Multiplication is indicated by a dot operator (multiplication dot) or a space. Units symbols are sometimes concatenated without a space if there’s no ambiguity, but this is incorrect.
kW⋅h
kW h
The corresponding compound unit name uses a hyphen (which is preferred, since it is more grammatically correct) — kilowatt-hour — or a space — kilowatt hour.
Division is indicated by a forward slash (solidus), horizontal line, or negative exponent:
m/s
m |
s |
m⋅s-1
The corresponding unit name uses the word “per” — metres per second. Abbreviating the word “per” to “p” in the symbol (e.g., “kmph” for “kilometres per hour”) is incorrect.
Note that derived units can involve multiple prefixes: 10 mm/ms is ten millimetres per millisecond. In general, it’s best to avoid using prefixes in both the numerator and denominator — except for kg, which is preferable to g — but multiple prefixes might be appropriate in some situations.
Does an exponent apply to the prefix as well as the unit?
An exponent applies to the combination of the prefix and unit. So, for example,
km2
is the square kilometre, the area occupied by a square that’s 1 km on each side. It’s not 1000 square metres (and no, you can’t write k(m2) partly because prefixes cannot stand alone — among other things, you wouldn’t know whether “m” meant milli- or metre).
How can I type unit symbols such as m2, °C, N⋅m, and µm?
Instructions for typing special characters such as exponents, the degree symbol, and the Greek letter mu depend on your computer’s operating system and what particular software you’re typing “in”, among other things. The following is some general advice; consult your computer’s “help” system or other documentation for further assistance.
You might find, for example, that your keyboard lets you redefine keys to make it easier to type commonly used special characters, or your word processing software might have additional ways to enter special characters (e.g., Microsoft Word’s “autocorrect” feature).
Google Chrome and Microsoft Edge
To make typing unit symbols easier on the web, we suggest using the browser extension for the Google Chrome and Chromium-based Microsoft Edge browsers, named Autocorrect Units, that facilitates this process. It automatically corrects mistyped symbols and “shortcuts” to their proper SI (or even US customary and imperial) symbols. We recommend using this extension whenever typing on the web. You can find more information about how it works and download it from the Chrome Web Store.
Windows
You can type many special characters by using the Alt key and the numeric keypad at the right side of your keyboard (make sure NumLock is on). For the characters shown in the table below, hold down Alt, type the number including the leading zero on the numeric keypad, then release Alt, and Windows will treat it as the indicated character.
Macintosh
You can type many special characters by using the Option key, but others require a different set of modifier keys. For the characters shown in the table below, hold down modifier keys indicated at the beginning of the keyboard shortcut sequence while pressing the indicated key(s). You might also find the Keyboard Viewer and Character Palette useful (available via System Preferences, International, Input Menu).
Character Chart
The following table shows a few commonly used characters for composing unit symbols. Note that only a few superscript characters are available this way. For more complex cases, such as m⋅s-1, you’ll need to use superscript features of your word processing software (or, in HTML, the <sup>
element).
Character | Name | Windows | Macintosh |
---|---|---|---|
µ | Greek letter mu | Alt + 0181 | Option + m |
° | degree sign | Alt + 0176 | Option + Shift + 8 |
′ | prime* | Alt + 8242 | Cmd + Ctrl + Space, 2032, Enter |
″ | double prime* | Alt + 8243 | Cmd + Ctrl + Space, 2033, Enter |
⋅ | multiplication dot† | Alt + 8901 | Cmd + Ctrl + Space, 22C5, Enter |
² | superscript 2 | Alt + 0178 | Cmd + Ctrl + Space, 00B2, Enter |
³ | superscript 3 | Alt + 0179 | Cmd + Ctrl + Space, 00B3, Enter |
Notes
* The prime and double prime symbols are often confused with the apostrophe/single quotation mark (‘) and the double quotation mark (“) symbols, respectively, due to their similar appearance especially when written in sans-serif font faces. However, care must be taken to distinguish each. One way to quickly tell the difference between the two is to change the text to a serif font; the prime and double prime will appear slanted while the others will not.
† The multiplication dot (dot operator) is sometimes also called a centered dot (or half-high centred dot
in the SI brochure). This is often confused with the middle dot (·), known officially as the interpunct, due to their similar appearance. To avoid this ambiguity, we always refer to the character as a multiplication dot or dot operator in order to make the reference to the mathematical operator clear.
The SI is a coherent system of units, but what does that mean?
The technical meaning of coherent is a bit different from the everyday meaning.
In a coherent system of units, you choose a set of base units for a set of fundamental, unrelated physical quantities, and derive other units by multiplication and division, without introducing any numerical constants. As a result, numerical (unit) equations and physical (quantity) equations have the same form.
In the SI, you start with seven base units: the metre (m) for length (l), the kilogram (kg) for mass (m), the second (s) for time (t), the ampere (A) for electric current (I), the kelvin (K) for thermodynamic temperature (T), the mole (mol) for amount of substance (n), and the candela (cd) for luminous intensity (Iv). By convention, symbols (or variables) for quantities are italicized, while symbols for units used to measure those quantities are in roman (non-italicized) type.
Quantities can be manipulated algebraically to derive other quantities. For example, velocity is length divided by time (neglecting relativity):
v = l/t
Units, too, can be manipulated algebraically to derive other units. Substituting the corresponding units in this example, we divide metres (m) by seconds (s) to create the SI-derived unit of velocity, metres per second (m/s).
Because we didn’t introduce any numerical factors, this set of units is coherent, and the numerical (unit) equations and the physical (quantity) equations therefore have the same form. In this example, v = l/t is literally true when you use the units metres, seconds, and metres per second for l, t, and v respectively. You don’t have to introduce any numerical factors to “convert” units.
Here’s another example. You probably know that
F = ma
Using SI base units — kilograms for m, metres per second squared for a, and newtons for F — that equation is literally true: just plug in the numbers. (“Newton” is a special name for the derived unit kg⋅m⋅s-2.)
Using a system of units that’s not coherent, the equation becomes
F = kma
where k is a constant whose value depends on the units. For example, if you use pounds for m, feet per second squared for a, and pounds-force for F, you need to use the value of (approximately) 32 for k, to get the right answer. Alternatively, you can introduce new units, such as the poundal for F or the slug for m, to make k = 1, but those are beyond the scope of this answer.
The term SI units refers to the complete set of base units, derived units, and decimal multiples and submultiples thereof. The term coherent SI units refers to the coherent subset, and therefore excludes decimal multiples and submultiples.
For example, millimetres, metres, and kilometres are all SI units, as are millimetres per second and metres per second. But of that group, only metres and metres per second are coherent SI units.
Note: In the past, the term SI units technically meant only the coherent units. Thus, the metre was considered an SI unit but the millimetre was not an SI unit, although both were considered units of the SI. This confusing terminology was officially eliminated in 2001.
What’s a metric? A metric century? A metric marathon?
The noun “metric” refers to a measurement for comparing or evaluating something.
For example, two metrics for baseball players are the batting average and RBI (runs batted in). A metric (albeit not very useful) for comparing computer programmers is the number of lines of code written each day. A metric for students is the grade or grade point average.
Note that “metric” (in the context of the SI) is an adjective, not a noun: metric system, metric units, metric legislation, metric conversion, metric ton, etc. People sometimes use “metric” or “metrics” as slang for “the metric system”, but technically this is not correct.
There are other “metric” things that are only peripherally related to the metric system. Among them:
- A metric century is a 100 km bicycle race.
- A metric marathon is a 26.2 km run. (A regular marathon is about 26.2 mi.)
Is the Body Mass Index (BMI) a metric measurement?
Body mass index (BMI) is a measure of body fat based on height and mass:
So, weigh yourself in kilograms, divide by the square of your height in metres, and the result is your BMI.
Using non-metric measurements, one must convert units:
Either way, the result has units of kg/m2, although BMI values are usually shown without units. For adults, BMI values are interpreted as:
BMI | Category |
---|---|
Below 18.5 | Underweight |
18.5–24.9 | Normal |
25.0–29.9 | Overweight |
30.0 and above | Obese |
For more about BMI, visit the Centers for Disease Control and Prevention’s BMI page.
See also Is it ‘weight’ or ‘mass’? elsewhere in this FAQ.
What about metric paper sizes?
ISO 216:1975, Writing paper and certain classes of printed matter — Trimmed sizes — A and B series, defines international standard paper sizes that are sometimes (arguably incorrectly) called “metric paper sizes” because they’re based on an area of 1 m2. Here’s a brief overview.
- In the ISO-A series, an A0 sheet has an area of 1 m2. In the ISO-B series, a B0 sheet has an area of √2 m2.
- The aspect ratio of each sheet is √2. As a result, if you cut a sheet in half, you get two sheets with the same aspect ratio as the original.
- Cut an A0 sheet in half, and you get two A1 sheets. Cut them in half and you get A2 sheets. Etc. Ditto for the B series. Since they all have the same aspect ratio, something that fits on (e.g.) an A3 sheet can be shrunk to fit an A4 sheet or enlarged to fit an A2 sheet, without cropping.
The A4 size is similar to US “Letter” size paper, but a bit narrower and longer: A4 is 210 mm × 297 mm while Letter-sized paper is 216 mm × 279 mm.
For more details, read Markus Kuhn’s writeup on International standard paper sizes.
What about dates and times?
Dates and times aren’t changed by the metric system.
From a standards point of view, the SI defines the length of the second, which is an SI base unit. The minute, hour, and day — with symbols min, h, and d, respectively — are officially considered “non-SI units accepted for use with the International System”.
Otherwise, times (in the sense of “what time is it?”) and dates are outside the scope of the SI.
That said, the Time Section of the International Bureau of Weights and Measures is responsible for maintaining TAI, from which the UTC time standard — and your local time — is derived. The Gregorian calendar, on the other hand, is seemingly a universal standard without an actual standard defining it beyond the original proclamation in 1582.
However, the RFC 2822 and ISO 8601:2000 standards are usually associated with the SI. Most countries around the world follow the RFC 2822 standard for writing full date formats, which was originally created as the standard date format for email messages.
Customarily, full dates in the US are written, for example, as
or
but according to the RFC 2822, these would be written as
The format is recommended by many because it follows a logical progression (from the smallest chronological unit to the largest) and doesn’t require the use of a comma. For these reasons, we use this date format exclusively at the USMA. The date format is also recommended by the Modern Language Association (MLA) in its style guides for its citation formats.
ISO 8601:2000, Data elements and interchange formats — Information interchange — Representation of dates and times, is a standard whose purpose is to help when moving files between computer programs and sorting files chronologically by name, but it’s also useful when humans write numeric date formats.
In ISO 8601 notation, you’d write as
2005-10-01
The meaning is obvious even to someone who’s never seen that format, and it’s not ambiguous. The problem with 10/1/2005 and 1/10/2005, of course, is that both can mean either or . This problem is primarily only a concern in the US and Canada, where month-day-year (MDY) date formats are in use, as the rest of the world uses the day-month-year (DMY) or ISO 8601 date formats. However, the confusion is a point of friction in international communication, and the ISO 8601 notation eliminates the problem altogether.
So, you don’t have to switch from spelling out dates to the ISO 8601 format, but when you do write dates numerically in places others will see them, like a web page, consider using the ISO 8601 format.
For more, visit Markus Kuhn’s A summary of the international standard date and time notation.
What’s the difference between hard and soft metric conversion?
The terms hard conversion and soft conversion refer to approaches you might take when converting an existing dimension from non-metric units to SI. “Hard” doesn’t refer to difficulty, but (essentially) whether hardware changes during the metrication process. However, the terms can be confusing and are probably best avoided, because they’re not always consistently defined and their meanings can be non-intuitive.
It’s simplest to consider two cases, “converting” a physical object and conversions that don’t involve an object.
Physical object dimensions
When converting a physical object, such as a product, part, or component, from customary to metric measurements, there are two general approaches.
First, one can replace the part with one that has an appropriate metric size. This is sometimes called a hard conversion because the part was actually replaced by one of a different size — the actual hardware changed.
Alternatively, one can keep the same part, but express its size in metric units. This is sometimes called a soft conversion because the part wasn’t replaced — it was merely renamed.
For example, if an existing part is 6 inches long — 152.4 mm — it might be metricated by either
- replacing the part by one that’s 150 mm long (hard metric conversion), or
- keeping its size unchanged at 152.4 mm but calling it a 150 mm part (soft metric conversion).
If the latter sounds odd, note that many items’ dimensions are actually nominal sizes — round numbers that aren’t their exact measurements — such as lumber, where a 2×4 isn’t really 2 by 4 inches, and pipe, where 1/2 inch pipe has neither an inside nor outside diameter of 1/2 inch.
Conceptual dimensions
When converting a measurement that does not involve a physical object, such as a guideline in a standard, there are again two approaches.
First, one can replace the customary measurement with an exact conversion to its metric equivalent. This is sometimes called a soft conversion, because the dimension did not change but has merely been given “a new name”.
Alternatively, one can replace the customary measurement with a similar but different metric measurement, generally chosen to be a round number. This is sometimes called a hard conversion, because the dimension actually changed.
(Replace “dimension” by “part” in the preceding two paragraphs to see the relationship to the corresponding terms in the preceding section.)
For example, a standard might define lines painted on street pavement to separate lanes:
A normal line is 4 to 6 in wide. …Broken lines should consist of 10 ft line segments and 30 ft gaps…
The exact dimensions aren’t critical, so the metric (dual-dimensioned) version can use round metric equivalents:
A normal line is 100 to 150 mm (4 to 6 in) wide. …Broken lines should consist of 3 m (10 ft) line segments and 9 m (30 ft) gaps…
This is a hard conversion because the actual dimensions changed.
On the other hand,
Centerline markings shall be placed on all paved urban arterials and collectors that have a traveled way of 20 ft or more in width…
Replacing 20 feet by 6 metres would require centerlines to be painted on some roads that previously didn’t require them. Using 7 metres would have safety implications, eliminating the requirement for centerlines on some roads where they’re currently required. So in this case, a more precise conversion is warranted:
Centerline markings shall be placed on all paved urban arterials and collectors that have a traveled way of 6.1 m (20 ft) or more in width…
This is a soft conversion because the actual dimension did not change, but is merely expressed in different units.
Is the proper term “metrication” or “metrification”?
We prefer “metrication”. There is no “if” about metrication, just “when”.
The Oxford English Dictionary lists metrication as the preferred form. Its earliest citation is a Times article quoting J. V. Dunworth, Director of the National Physical Laboratory:
Earlier this year the National Physical Laboratory sought the guidance of the editor [sc. E. McIntosh] of the Concise Oxford Dictionary on this matter … His reply was as follows: — ‘Consider the following: Carbon(ize); decimal(ize);…methyl(ate); oxygen(ate). The modern tendency is to use -ize, -ization in forming new words rather than -ate, -ation. It seems to me that either metrication or metricization could be used.’ In the light of these comments the NPL and the Ministry of Technology chose ‘metrication’ on the grounds of brevity and euphony. The corresponding verb ‘metricate’ seems very satisfactory.
The term metrification is slightly more recent and less commonly used.
Does the non-metric US system of measurements have a name?
There’s no official name for the non-metric US system of weights and measures, but the most commonly used terms are:
- “customary system” or “customary units” or “customary weights and measures” (Metric Act, 1866; Mendenhall Order, 1893; NIST SP 345, A Metric America: A Decision Whose Time Has Come, 1971)
- “inch-pound units” (frequent, though more recent)
If it’s not obvious from the context, it’s wise to distinguish the US system from others: “US customary system”. For the same reason, the terms “imperial system” and “English system” are best avoided when referring to US measurements because those terms refer to the British system. The imperial gallon, quart, pint, etc., differ in size from the corresponding US units, although the imperial units have largely been abandoned as the Commonwealth nations that used them went metric.
In fact, one should bear in mind that the non-metric “system” isn’t really a system at all, but a collection of units that has evolved over time, with the values of same-named units varying from country to country and, in some cases, varying depending on what’s being measured. For a good look at these issues, read J. K. Upton’s report to Congress as well as Alexander Graham Bell’s address to Congress.
How are US customary units officially defined?
Since 1893, US customary units have been defined in terms of the SI. The main relationships are “1 yard equals 0.9144 metre” and “1 pound (avoirdupois) equals 0.453 592 37 kilogram”, from which other non-metric units (inches, feet, ounces, etc.) are derived.
For details, read the 1893 Mendenhall Order and the 1959 Refinement of values for the yard and pound, as well as the 1954 Adoption of the International Nautical Mile.
Which countries are (and aren’t) metric?
Folklore suggests that three countries don’t use the metric system — the US, Liberia, and Myanmar/Burma — while all others do. In reality, virtually all countries use the metric system, and the question of who is and isn’t metric is difficult to answer.
Regarding which countries went metric when, see USMA’s Metrication in other countries page. We also have information about recent international metric advances in countries still in the process of going metric.
For some historical information about countries’ adoption of the metric system, read J. K. Upton’s 1878 report to Congress (he includes a summary about half-way into his writeup).
How do you decide whether a country is “metric” or “non-metric”?
People like to think of a country as being “metric” or “non-metric”, but deciding which label to apply is difficult because it’s not an either/or condition that switches on a particular date.
For example, it’s often stated that the US is a non-metric country. But while the US is non-metric in some areas, such as road signs, speedometers, and weather reports, it’s metric in many other areas, such as food quantity and nutrition labels, car and machinery manufacturing, and athletics where athletes run 100-metre races.
Conversely, Canada is generally considered to be metric, and its road signs indeed are, yet it uses yards in its (Canadian) football games and typically uses feet, inches, and pounds when describing a person’s height and weight. Similarly, it’s usually stated that the UK is a metric country, but its road signs are non-metric, just like the US.
So, beware of reading too much into the “metric” and “non-metric” labels when applied to entire countries. Even the question of whether a country is “officially” metric is harder to answer than you’d think. For example, officially, the US has been metric since 1866, 1893, 1975, or 1988, depending on which official declaration you prefer to cite, and similar uncertainties apply to other countries.
Last updated: